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Abstract: The study investigated the application of Wastewater-Based Epidemiology (WBE) as a
tool for monitoring the SARS-CoV-2 prevalence in a city in northern Italy from October 2021 to
May 2023. Based on a previously used deterministic model, this study proposed a variation to
account for the population characteristics and virus biodegradation in the sewer network. The model
calculated virus loads and corresponding COVID-19 cases over time in different areas of the city
and was validated using healthcare data while considering viral mutations, vaccinations, and testing
variability. The correlation between the predicted and reported cases was high across the three waves
that occurred during the period considered, demonstrating the ability of the model to predict the
relevant fluctuations in the number of cases. The population characteristics did not substantially
influence the predicted and reported infection rates. Conversely, biodegradation significantly reduced
the virus load reaching the wastewater treatment plant, resulting in a 30% reduction in the total virus
load produced in the study area. This approach can be applied to compare the virus load values
across cities with different population demographics and sewer network structures, improving the
comparability of the WBE data for effective surveillance and intervention strategies.

Keywords: wastewater-based epidemiology; SARS-CoV-2; COVID-19; wastewater; biodegradation;
sewer network; spatiotemporal model; public health; early-warning system

1. Introduction

The global effort against the COVID-19 pandemic has underscored the need for
innovative and robust surveillance methods to track the prevalence of SARS-CoV-2, the
causative agent of COVID-19, within communities. Wastewater-based epidemiology (WBE)
has emerged as a valuable tool for the proactive and scalable monitoring of viral presence in
populations [1], and several countries have successfully implemented WBE as a surveillance
system complementary to clinical testing [2,3]. This surveillance method not only aids
in the early detection and prevention of disease outbreaks but also enables timely public
health interventions such as targeted testing, contact tracing, and resource allocation [1,2].
Several studies [4,5] have emphasized the importance of environmental surveillance as an
early warning system to detect the viral levels in the population and identify outbreaks
before cases are reported to the healthcare system.
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Recently, the application of this method as a complementary approach to clinical
surveillance has become even more important given the reduction in recorded tests and the
widespread occurrence of asymptomatic or mildly symptomatic cases [6]. Indeed, wastew-
ater serves as a collective pool of genetic material shed by an entire community, providing
insights into the prevalence of SARS-CoV-2, including asymptomatic and presymptomatic
cases [1,2,7]. The advances in the monitoring of SARS-CoV-2 in wastewater have been sig-
nificant, with molecular techniques such as quantitative reverse transcription—polymerase
chain reaction (qRT-PCR) playing a pivotal role in the accurate quantification of viral
RNA [1,3].

Italy, one of the hardest hit countries, has been monitoring urban sewage since July
2020 as part of a pilot study: the “SARI project” (Epidemiological Surveillance for SARS-
CoV-2 in urban sewage in Italy), coordinated by the National Institute for Public Health
and involving a network composed of regions, wastewater service providers, regional
environmental protection agencies, and local health authorities [8].

On 17 March 2021, the European Commission recommended that EU member states
begin monitoring SARS-CoV-2 in wastewater by 1 October 2021 [9]. Therefore, since Octo-
ber 2021, in Italy, existing research activities within the SARI project have been transformed
into a surveillance system, with two main focuses: analyzing the trend of SARS-CoV-2 in
urban wastewaters to predict epidemiological trends in the population and studying the
spread of SARS-CoV-2 variants over time [8].

Following the principles of WBE and focusing on the surveillance objective defined
by the SARI project, this study aimed to predict the temporal and spatial distribution of
COVID-19 cases starting from SARS-CoV-2 detection in the main wastewater treatment
plant (WWTP) of a medium-sized city in northern Italy.

This interest aligns with several studies conducted in many other countries, where var-
ious modeling techniques have been employed in the development of WBE for COVID-19
surveillance [10], including regression [5,11], artificial intelligence [12,13], and deterministic
models [3,14–17].

In the present study, a deterministic model was applied: the equation upon which the
model was based was initially proposed by Ahmed [14] and subsequently employed in
various other studies [3,15–17]. The equation was adapted to integrate a spatial component,
which enabled the calculation of the spatial and temporal distribution of COVID-19 cases
by adjusting the SARS-CoV-2 RNA concentration data at the WWTP to take into account
virus biodegradation effects.

The model accurately simulated the biodegradation of the virus along the sewer
network via an approach similar to that employed by McCall et al. [18]. This estimate,
together with the characteristics of the population and its geographical distribution, allowed
us to determine the virus load produced in each zone within the study area and the
corresponding number of new cases over time.

This approach proposes a methodology that can be effectively implemented in mul-
tiple cities where WBE is conducted. This methodology enables a reliable comparison of
virus load values measured at WWTPs among cities characterized by different population
demographics and sewer network structures.

The performance of the model was evaluated by comparing the estimated cases with
those recorded by the regional healthcare system and considering various relevant health
variables to interpret the results.

2. Materials and Methods
2.1. Study Area and Population Analysis

This study was conducted based on the measurements detected at the main WWTP in
Bologna, the capital of the Emilia-Romagna region in northern Italy. The plant is located
in the north of Bologna and serves the city and neighboring municipalities, catering to a
capacity of 800,000 population equivalents.
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The study area was defined as the area served by the WWTP. The study was con-
ducted at the sub-municipal level; therefore, the municipalities were divided into census
sections [19], which are already widely used for statistical analyses. Only Bologna was
divided into statistical areas [20], as these areas are more extensive and provide more recent
data than the census sections [19].

A three-step selection process was followed to define the areas (i.e., census sections
and statistical areas) included in the study area. First, the study area was defined as the
union of the areas encompassed by or intersecting the catchment area served by the sewer
network. Additionally, the areas enclosed by the previously selected areas were included.
Finally, those areas that were mainly connected to another treatment facility were excluded
from the selected areas. The resulting study area included almost all the statistical areas of
Bologna and a part of the census sections of the neighboring municipalities (Figure 1).

Figure 1. Map of the study area (orange) divided into census sections and statistical areas (delineated
in gray). Representation of the wastewater treatment plant (WWTP) (red triangle), sewer network
(blue), catchment area (light blue), names, and boundaries of the municipalities (black).

The study population is an estimate of the number of individuals domiciled in the
study area, obtained by multiplying the number of residents [19,20] by a coefficient de-
rived from the data in the Regional Assistance Registry, which represents the ratio of the
domiciled population to the resident population at the municipal level (Table S1).

2.2. Virus Concentration and Wastewater Flow Rate at the WWTP

The concentration of SARS-CoV-2 RNA [GC/L] and the influent flow rate [m3/day]
observed at the inlet of the WWTP were obtained from a data sharing platform within
the SARI project network. The study period was chosen according to the availability of
concentration data and ranged from 13 October 2021 (the first day of sampling) to 24 May
2023. Measurements were taken weekly or twice a week, with an irregular frequency,
resulting in a total of 165 data points over the whole period.

Wastewater samples were collected and processed for RNA extraction and virus
concentration determination according to the reference analytical protocol established for
the SARI project [21]. Composite wastewater samples of 100 mL were collected over a 24 h
period. A 50 mL aliquot was frozen and constituted the “archive sample” to be retained
for any further determinations. The second 50 mL aliquot was processed immediately or
stored at a refrigerated temperature (−20 ◦C) for a maximum of 24–48 h until analysis.

The wastewater sample concentration was achieved with a PEG/NaCl protocol accord-
ing to the method published by Wu et al. [22]. The SARS-CoV-2 analysis included a first step
of cell lysis with guanidine isothiocyanate, followed by extraction of the genetic material
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based on the adhesion of nucleic acids to magnetic silica using the MiniMag/eGeneUP
(bioMerieux Italia Spa, ia di Campigliano, 58 | Loc. Ponte a Ema-50012 Bagno a Ripoli
(FI), Italy) platform with a final volume of 100 µL for RNA elution. The quantitative de-
tection of SARS-CoV-2 was performed via real-time RT-qPCR in accordance with the EU
2021/472 Recommendation [9]. The quantitative determination of SARS-CoV-2 was based
on ORF-1ab (nps 14), with Murine Norovirus used as a control virus during the analysis.

The mean (1.79 × 105 [GC/L]), median (0.83 × 105 [GC/L]), and maximum
(1.10 × 106 [GC/L]) concentrations of SARS-CoV-2 RNA measured at the WWTP
(Figure S2, Table S2) were within the range (102–105 [GC/L] with maximum values above
106 [GC/L]) found in the literature [4,5,23,24].

The influent flow rate at the WWTP inlet was measured using two electromagnetic
flow meters (MG3100 and MG5100) installed on two pipelines (DN 1800 and DN 1400,
respectively). Typically, only one pipeline was operational at a time. However, when the
flow rate increased, the second pipeline was opened and the other electromagnetic flow
meter was activated. The measurements represent the average daily flow rate. In the
study period, the median flow rate was 118.7 × 103 [m3/day], the minimum flow rate was
96.8 × 103 [m3/day], and the maximum flow rate was 432.9 × 103 [m3/day] (Figure S3,
Table S3).

In combined sewer systems, such as the one described in this study, intense rainfall
events can cause the significant dilution of the SARS-CoV-2 RNA concentration in the sewer,
as well as fluctuations in flow velocity and other parameters. Therefore, the concentration
data collected when the flow rate exceeded the 90th percentile of the values recorded in
2022 (156.5 × 103 [m3/day]) were treated as outliers and thus removed [11] (Table S3,
Figure S3). In support of this method, the correlation between the influent flow values
measured at the WWTP inlet and the cumulative daily precipitation values [25] measured
by the monitoring stations in Bologna and neighboring municipalities was analyzed. The
highest correlation (Pearson 0.88) was observed when considering the cumulative daily
precipitation of the day preceding the flow measurement. This could be attributed to
evening rains that reach the WWTP after several hours, contributing to the cumulative
influent flow of the following day.

The daily load of SARS-CoV-2 RNA at the WWTP inlet [GC/day] was obtained by
multiplying the observed values (after removing the outliers) of the SARS-CoV-2 RNA
concentration by the influent flow rate. The historical time series of the daily SARS-CoV-2
RNA load was then processed using the locally estimated scatterplot smoothing (LOESS)
method [26]. This was performed with a dual purpose: first, to transform the historical
series into one with a daily regular data interval based on irregularly measured data points,
and second, to smooth the values to obtain a signal purified from potential measurement
errors (Figure S4). The LOESS method was implemented in Python [27], considering
11 neighboring data points for the local value estimation as in Rauch et al. [11].

2.3. Health Data

The Local Health Authority of Bologna provided daily COVID-19 cases within the
statistical areas and census sections where the subjects were isolated.

For each patient, the following information was available: the census section or
statistical area of isolation, the presence of symptoms and the date of onset of symptoms if
symptomatic, the date of the swab test, diagnosis date (i.e., the date on which a positive
case is officially recorded in the healthcare system), the admission date and discharge date
in the case of hospitalization, the final outcome (i.e., whether the individual recovered or
deceased), the final outcome date, and the cause of death if deceased.

The model presented in this article was implemented to estimate the new daily cases.
Therefore, the data on the new daily cases reported from the healthcare system were
selected to evaluate the performance of the model. The decision to estimate the new
daily cases instead of the active cases was made in recognition that the duration of an
infected individual’s classification as an active case is likely to be more uncertain, varying
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significantly from person to person, and influenced by the prevailing COVID-19 regulations
(e.g., a confirmatory test was not always required to confirm the end of the infection period).

To reduce the individual variability, the date of symptoms onset (or the date of the swab
test if asymptomatic) was taken as the reference date for defining a new case, hospitalization,
or death reported by the healthcare system. Because of the correspondence between
symptoms onset and the peak of SARS-CoV-2 shedding in feces, this was considered the
best reference date for comparing predicted and reported cases [15,28,29].

The daily city-level data on the tests and vaccines (second and third doses) were
provided by the Local Health Authority of Bologna. An analysis of these health variables
was performed to interpret the model results.

2.4. Model Equation

The model was based on an equation used in previous studies [3,14–17] to model
the relationship between the SARS-CoV-2 concentration at WWTPs and the number of
COVID-19 cases. This equation was adapted by integrating two different factors to consider
the spatial component. This adjustment was made to obtain a more accurate estimate of
virus biodegradation and, consequently, to derive the actual contributions of SARS-CoV-2
RNA from different areas within the catchment area and thus predict the corresponding
number of COVID-19 cases.

A virus biodegradation factor and a population-based coefficient were introduced into
the equation to differentiate the contribution of each area to the observed concentration at
the WWTP. Both factors were calculated for each area.

The daily load of SARS-CoV-2 at the inlet of the WWTP [GC/day] was set equal to
the sum of the daily virus load generated by each area, which was reduced to account
for the virus biodegradation along the sewer network and refined by incorporating the
population-based coefficient associated with the population of each area (Equation (1)).

CW(t)·QW(t) = Sh·M f ·IR(t)·∑i

(
Pi· e−kθi ·Wi

)
(1)

where CW (t) is the measured concentration of SARS-CoV-2 RNA at the inlet of the WWTP
[GC/L], QW (t) is the wastewater flow rate at the inlet of the WWTP [L/day] (CW (t)
multiplied by QW(t) represents the daily load of SARS-CoV-2 RNA [GC/day] as derived in
Section 2.2), Sh is the fecal shedding rate (i.e., the number of SARS-CoV-2 RNA genomic
copies per gram of feces produced by each infected individual) [GC/g], Mf is the mass of
feces produced per inhabitant per day [g/(inhabitant · day], i represents the area within the
municipality, Pi is the population in the area i [inhabitant], k is the biodegradation constant
[h−1], θi is the hydraulic residence time for the area i [h], Wi is the population-based
coefficient characteristic of each area i [adim.], and IR(t) [adim.] is the average infection
rate (i.e., the number of cases divided by population) across the entire study area, and it is
the unknown variable of the equation (the methodology followed to derive the equation
is detailed in the Supplementary Materials, Section S3). Once IR(t) was determined, the
number of cases in each area over time (ci) was derived (Equation (2)).

ci(t) = IR(t)·Pi·Wi (2)

The model output was the number of predicted cases per day for each census section
or statistical area included in the study area. However, when comparing the predicted and
reported cases, the results were aggregated into grouped areas. The municipal boundaries
were used to group the census sections, while for Bologna, a proximity criterion was chosen
to group some statistical areas together. The aim of this approach was to increase the
size of the population within each comparison zone, thereby enhancing the statistical
significance when observing the spatial variability in the cases. The 88 statistical areas
within the city of Bologna were therefore grouped into 59 areas, ensuring that none had less
than 2000 inhabitants, while the aggregation of census sections by municipality resulted in
zones with more than 2700 inhabitants (Figure S1, Table S12).
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The infection rate for each grouped area over time IRj(t) was then obtained (Equation (3)).

IRj(t) =
cj(t)

Pj
= IR(t)·Wj (3)

where cj represents the number of cases in each grouped area, Pj is the total population of
the grouped area, and Wj is the population-based coefficient for grouped areas (weighted
average of Wi based on the population size).

2.4.1. Population-Based Coefficient

The population-based coefficient (Wi) allowed us to consider for each area the fol-
lowing population characteristics in the prediction of cases: age, sex, family size [19,20],
and comorbidities. The comorbidity data were provided by the Local Health Authority
of Bologna and were obtained from different databases related to the years 2021–2022
(hospital discharge forms [SDO], territorial pharmaceutical care [AFT], direct dispensing
drugs [FED], and specific pathology).

The Wi coefficient, which is constant in time and variable across space, was defined as
the ratio between a specific infection rate for area i (Ai) and the infection rate for the entire
study area (ATOT) (Equation (4)). To establish Ai and ATOT, the Poisson regression was
employed, and the regression coefficients (β0,β1,..βn) were derived from a study conducted
in the municipality of Bologna from February 2020 to November 2021 [30] (Table S4). The
variables (x1, x2. . . xn) were calculated for each area and represent the fractions of the
population belonging to the following classes: age (0–21, 21–65, >65), sex (M/F), family
size (1, 2, 3, >3), and comorbidities (hypertension, diabetes, and the “other comorbidities”
considered in the study [30]).

Wi =
Ai

ATOT
=

eβ0+β1x1i+β2x2i+... βnxni

eβ0+β1x1TOT+β2x2TOT+... βnxnTOT
(4)

2.4.2. Fecal Shedding Rate and Mass of Feces

Two average values of the fecal shedding rate (Sh) were calculated using the data
from the Delta and Omicron variants in six different communities in the USA [31]. The
population-weighted average shedding rates for the Delta and Omicron variants included
in the model were 108.658 and 107.813, respectively (Table S6).

Considering the evolution of the virus from the Delta variant to the Omicron variant
in December 2021, the shedding rate for the Delta variant was used until 19 December,
while that for the Omicron variant was applied from 3 January onwards, and a combination
of the two values was used for the last two weeks of December (Table S8). The daily wet
mass of feces (Mf) produced by each individual was assumed to be 128 [g/(inhabitant ·
day)] [32].

2.4.3. Biodegradation

The biodegradation of the virus along the sewer network was modeled using a first-
order kinetics equation (Equation (S5)) [33–35]. The biodegradation constant (k) was
calculated on the basis of the values found in the experiments [4] conducted under the
conditions most similar to those of the present study. The values were adjusted to the
observed temperatures in the Bologna sewer network (12 ◦C, 16 ◦C, 20 ◦C) [36] according
to a linear equation (Equation (5)) [33,35]. The linear coefficient (m) and the intercept (q)
were calculated from the literature values of k and temperature (T) [4], after which the k
values corresponding to the observed temperatures in Bologna were determined. The three
derived k values (0.097, 0.101, and 0.104 [h−1]) were included in the model, varying with
the time of the year (Table S9).

log10k = m·T + q (5)
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The hydraulic residence time (θi) for each area was estimated by dividing the effective
distance (Di), i.e., the distance calculated along the network from the centroid of each
area to the WWTP, by the wastewater flow velocity along the sewer network (v). Di was
determined by applying the Dijkstra algorithm [37] to measure the shortest path along the
sewer network from the centroid of each area to the WWTP (using the GeoPandas library
(version 0.13.2) in Python).

The value of v was assumed to be constant and equal to the value (0.8 [m/s]) used for
the Milan sewer network [38] due to the similarities between the two sewer systems. This
value falls within the typical range of the average velocity (0.3–0.91) in the cross section of
combined sewers [39].

2.5. Uncertainty and Sensitivity Analysis

The model uncertainty was calculated using the error propagation formula of Li
et al. [3], where the uncertainty is expressed as the relative standard deviation (RSD).
The formula includes the relative standard deviations of each model parameter. These
uncertainty values were derived from the literature (Section S4).

The total number of cases is included in the formula because the uncertainty associated
with the shedding rate and the mass of faces of each individual decreases as the number of
infected individuals increases: beyond 10 cases, the impact of these uncertainty values on
the total uncertainty becomes limited [3].

The uncertainty associated with the model results varied from 0.81 RSD to 0.33 RSD
depending on the total number of infected individuals in the area.

The unknown variable (IR(t)) exhibited a linear dependence on all the model pa-
rameters except k and θ. Therefore, a 1% variation in any of the parameters resulted in
a corresponding variation in IR(t) of ±1%, while a 1% increase in k or θ, resulted in a
corresponding increase in IR(t) of 0.35% (Equation (S9)).

3. Results
3.1. Effect of Biodegradation

More than half of the areas considered were located within an effective distance range
of 10 to 18 km from the WWTP (corresponding hydraulic residence time: 3.5–6 h). The virus
load produced in these areas decreased by 30–45% along the path in the sewer network
due to biodegradation. The virus loss was highly significant (60–70%) in the areas with
the greatest effective distance (>30 km) from the WWTP (Table 1, Figure 2). However, the
population density in these areas was very low.

Figure 2. (A) Map of biodegradation in the study area, the WWTP (red triangle). (B) Frequency
distribution of biodegradation in the study area. Biodegradation is expressed as a 1 − e−kθi percentage,
calculated with k = 0.101 (T = 16 ◦C).
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Table 1. Maximum, minimum, median, standard deviation, 25th percentile, and 75th percentile values
of the following: linear distance of centroids from the WWTP [km], effective distance (calculated
along the sewer network) of centroids from the WWTP (Di [km]), hydraulic residence time (θi [h]),
and biodegradation (1−e−kθi [%]) varying with the biodegradation constant k.

Max Min Median St.Dev. 25% 75%

Linear distance i [km] 26.7 0.5 10.9 4.7 8.7 13.3
Di [km] 34.4 0.8 14.5 6.6 11.8 18.8

θi [h] 11.9 0.3 5.0 2.3 4.1 6.5
1 − e−kθi [%], k = 0.097 [h−1] 68.6 2.8 38.6 13.0 32.8 46.9
1 − e−kθi [%], k = 0.101 [h−1] 70.0 2.9 39.8 13.2 33.8 48.3
1 − e−kθi [%], k = 0.104 [h−1] 71.1 3.0 40.7 13.4 34.6 49.3

The ratio between the SARS-CoV-2 RNA load measured at the WWTP and that gen-
erated in the areas of the catchment before entering the sewer system and thus being
biodegraded is independent of time and can be expressed as (Equation (6)):

∑i Pi·e−kθi ·Wi

∑i Pi·Wi
(6)

At 16 ◦C, the ratio was 0.694, and this value slightly decreased as k increased. Therefore,
the virus load detected at the WWTP was approximately 70% of that actually produced in
the study area.

Starting from the estimate of biodegradation, the contribution of each area to the
virus load detected at the WWTP was evaluated, and indicators were created to better
understand the significance of the biodegradation and virus production in the different
areas (Section S5.1).

The contribution of hospitals to the viral load discharged into the sewer system and
detected at the WWTP during the study period was evaluated based on the number of
hospitalized individuals. While the ratio of the COVID-19 patients hospitalized to the total
number of cases reported in the whole study area was very low (0.03), this value was much
higher (i.e., 42, 14, and 4) when referring only to the cases reported in the three statistical
areas of Bologna where hospitals were located. These coefficients were used to estimate the
virus load generated in each area with hospitals and contributing to the virus load detected
at the WWTP, taking into account biodegradation. For the area where the hospital with the
highest number of COVID-19 patients was located, this predicted contribution ranged from
0.014%, without considering the hospitalized subjects, to 1%, considering the hospitalized
subjects (Table S13).

3.2. Predicted and Reported Infection Rates in the Study Area

The predicted and reported daily IR(t) trends over the study area were compared
throughout the entire study period (Figure 3). The reported IR(t) was obtained as the daily
sum of the reported COVID-19 cases in the area relative to the date of symptom onset
or the date of the swab test (Section 2.3), smoothed with a simple moving average over
7 days and divided by the total population within the study area. The mean absolute error
between the predicted and reported IR(t) over the entire study period was 54 cases per
100,000 inhabitants, and the Spearman correlation coefficient was 0.599.

The time period was subdivided according to the trend of the reported cases in order
to better compare the predicted and reported data. The transition dates were chosen
to correspond to the relative minima of reported cases, except for the beginning of the
first wave, for which the shift between the Delta and Omicron variants was chosen. This
approach defined three waves and an “off-waves” period (Table 2).
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Figure 3. Predicted (blue) and reported (orange) infection rate IR(t) across the entire study area
and the uncertainty interval (RSD) (light blue) associated with the predicted IR(t). Values of total
predicted and reported COVID-19 cases over the single wave (delimitated by dashed vertical lines)
in the entire study area.

Table 2. Mean absolute error (MAE), mean absolute percentage error (MAPE), and the Spearman
correlation coefficient between predicted and reported IR(t) in different time intervals (first, second,
and third waves, off-waves period, and the entire study period).

1◦ Wave (19
December 2021–

28 February 2022)

2◦ Wave (1 March
2022–2 June 2022)

3◦ Wave (3 June
2022–15 August

2022)

Off-Waves (13
October 2021–

19 December 2021
and 15 August

2022–24 May 2023)

Entire Study
Period (13 October
2021–24 May 2023)

MAE 47 120 109 26 54
MAPE 0.3 1.5 1.3 3.6 2.5

Spearman 0.858 0.954 0.897 -0.223 0.599

The correlation was consistently high across the three waves but significantly lower
during the “off-waves” period. In the first wave, the predicted and reported cases were
quite similar, with an underestimation within the uncertainty range (mean absolute per-
centage error of 0.3), whereas in the subsequent waves, an overestimation by the model
was observed (possible explanations are provided in Section 4.3).

The time trends for the total tests and reported cases were very similar, showing
a high correlation (Spearman 0.87). For both the tests and cases, the values in the first
wave were significantly higher than those observed in the subsequent waves, whereas the
positivity rate (i.e., the proportion of positive cases among the tests performed) showed
a less pronounced difference between the first and subsequent waves, and its trend was
more similar to that of the hospitalizations (Figure 4).

In addition, to evaluate the early warning capacity of the system, the time lag between
the virus load at the WWTP and the number of active cases reported over time was
investigated. The diagnosis date was taken as the reference date for the active cases,
corresponding to the date on which a positive case was officially registered in the healthcare
system. The maximum correlation (Spearman coefficient = 0.70) was observed when
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comparing the virus load data with the curve of the active cases recorded 9 days later,
suggesting a time lag of 9 days.

Figure 4. Tests: Daily reported tests across the entire study area per 100,000 inhabitants averaged
with a simple moving average (SMA) over 7 days. Positivity rate: Weekly average of positive cases
among tests conducted. To calculate the positivity rate, the date on which the test was conducted
was taken as the reference date for both tests and cases. Reported cases: reported daily COVID-19
cases over 100,000 inhabitants averaged with a simple moving average (SMA) over 7 days (reported
IR(t)). Hospitalizations: weekly sum of COVID-19 hospitalizations. Both reported cases and hospital-
izations are represented based on the symptom onset date if symptomatic or the date of the test in
asymptomatic cases.

3.3. Spatial Comparison of the Predicted and Reported Cases in Each Grouped Area

The comparison between the predicted and reported cases in the grouped areas
showed a medium/high accuracy of the model in estimating the spatial distribution of the
cases (Figure 5). In particular, in the first wave, the error rate was low, with an average
mean absolute percentage error across all the areas of 0.18 (min: 0.01, max: 0.20), while in
subsequent waves, the error rate increased due to the greater gap between the predicted
and reported daily IR(t) trends (Table S12).

Figure 5. Maps of predicted total cases (A) and reported total cases (B) during the first wave in the
different grouped areas.
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However, the model failed to accurately capture the spatial variation in IRj(t) (Figure 6).
In fact, the standard deviation of the predicted IRj(t) among the different areas was an
order of magnitude lower than that associated with the reported IRj(t). The minimal
variations in the predicted IRj(t) across the different grouped areas are due to the similarity
in the values of the population-based coefficient Wj (max = 1.024, min = 0.983, standard
deviation = 0.009) (Table S14).

Figure 6. Box plot of the daily average reported and predicted infection rates (IRj), along with the
lower and upper uncertainty bounds associated with the daily average predicted IRj. The IRj is
expressed as daily average cases per 1000 inhabitants over the wave and in the grouped area (for
each box plot, one data point for each grouped area and for each wave is represented).

The standard deviation of Wj was low since the regression coefficients used to deter-
mine Wj were very low (max = 0.329, min = −0.008) (Table S4). In addition, the population
characteristics were very similar among the different areas (Table S5).

The uncertainty associated with the daily estimation of IRj(t) in each area was cal-
culated (Section 2.5). As the uncertainty depends on the number of cases (the lower the
number of cases, the higher the uncertainty), its value varied from area to area and was
higher than that calculated in the temporal analysis. Starting from the uncertainty value, the
upper and lower limits associated with the estimation of IRj(t) in each area were calculated
(Figure 6).

Only during the first wave and off-wave periods did the reported values of IRj(t)
remain within the uncertainty range associated with the predicted IRj(t), while dur-
ing the second and third waves, the reported IRj(t) only partially overlapped with the
uncertainty range.

The spatial variation in the reported IRj(t) did not exhibit consistency over time; across
the different areas, the IRj(t) values deviated differently from the mean, showing both
higher and lower values over time (Figure S7). Indeed, across the three different waves and
in the off-waves period, only 21 out of 67 areas (31%) demonstrated consistent temporal
variations. Of these, 11 areas consistently showed IRj(t) values above the mean, while
10 areas consistently exhibited values below the mean. However, for 46 areas, the variation
was not consistent.

In a comprehensive analysis of the three waves and the off-waves, considering the
variation in IRj(t) relative to the mean, 31 areas (46%) showed concordance between the
predicted and reported variations in IRj(t), while this was not observed in 36 areas.
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4. Discussion
4.1. Model Parameters

The fecal shedding rate (Sh), the wet mass of feces (Mf), and the biodegradation
constant (k) were assumed from the literature, as the site-specific data for these parameters
were not available. The shedding rate showed significant variability, ranging from 103 to
109 [GC/g] [3,16,29,31]. This variability was attributed to the estimation method, which can
be at the individual level [3,40] or at the population level (retrospectively determined based
on the observed concentrations at WWTPs and the positive cases) [16,31]. In addition,
shedding depends on factors such as population characteristics (e.g., sex, age, ethnic
group [31], and health status [3]), viral variants or sub-variants [31], symptoms presented,
and the stage of the disease [41,42].

Given the considerable variability in shedding values, two values were selected
specifically for the variants prevalent during the study period (Delta and Omicron) [31].
Moreover, we averaged the shedding values calculated across diverse and numerous
populations to account for the inter-individual shedding variability.

Prasek et al. [31] considered a six-day sum of reported cases to be appropriate to repre-
sent the number of infected individuals contributing to the daily virus load in wastewater.
Therefore, the shedding coefficients derived from Prasek et al. [31] were included in the
model as daily averages. This allowed us to consider that the cases contributing to the
concentration at the WWTP were not only the new daily cases but also the active cases with
a high shedding rate, i.e., the cases occurring within the six days surrounding the day of
the measurement [15,43].

The value chosen for the daily wet mass of the feces produced by each individual
represents the median of data collected across the various communities in many countries
over a long period (1934–2011) [32].

The value of the biodegradation constant varies depending on the type of sewer
system (combined or separate), wastewater temperature and pressure [18,23,44], the initial
virus concentration [18,33] and structure [34], and the other influent parameters, such as
suspended solids [45], biofilm [46], BOD, and pH. The values of k in the literature range from
0.004 [h−1] [33] to 0.120 [h−1] [4], as determined from the experiments conducted under
specific conditions. In the present study, the value for the biodegradation constant was
derived from an article [4] that closely matched our conditions: the k value was determined
by analyzing the fluctuations in the virus concentration over short time intervals, and the
virus was naturally present in the collected wastewater without any additional introduction.
In fact, the SARS-CoV-2 shed in feces may contain intact virus, compromised capsid
virus, and free nucleic acids; thus, the rapid decay of SARS-CoV-2 RNA observed in the
study [4] reflects the decay of all three viral RNA sources typically found in naturally
contaminated wastewater.

Notably, an improvement and possible future development of the model will involve
the derivation of site-specific values for the described parameters.

4.2. Effect of the Biodegradation and Contribution of Each Area

The impact of biodegradation on reducing the viral load reaching the WWTP was
assessed by estimating the reduction between the viral load generated from each area
and that detected at the WWTP. The maximum reduction reached 70%, with an average
reduction of approximately 30%, indicating the substantial influence of biodegradation on
reducing the virus load in the sewer network.

In addition, the virus load [GC/day] produced in the entire study area over time,
the removal of the effects of biodegradation, and the geographical distribution of the
population were determined (Equation (6)) to allow the comparison of this parameter
across different cities. According to the literature, the normalized value at the WWTP can
be obtained by dividing the measured load by the total population served by the plant [47].
Our approach provides a more accurate normalization method that takes into account the
actual distance of the population from the WWTP.
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Furthermore, in the pursuit of the monitoring and early warning objectives, indicators
were developed to assess the impact of the population density and biodegradation on
the virus load detected at the WWTP. These indicators showed that densely populated
areas, even those far from the WWTP, contributed significantly to the virus load at the
WWTP. However, the contribution of distant areas was mitigated by the high levels of
biodegradation. This led to the identification of potential monitoring sites.

In addition, the hospital contributions to the viral load during the study period were
calculated retrospectively. In fact, the contribution of each area estimated by the model
is based on the population domiciled in the area and does not take into account the
possibility that the infected individuals may be located in different areas. The contribution
of each hospital to the total viral load at the WWTP was considered negligible, whereas the
individual contribution of each hospital was significant compared to the contribution of
the area in which it was located.

4.3. Health Variables Analysis to Compare the Predicted and Reported Infection Rates

When interpreting the results of the comparison between the reported and predicted
COVID-19 cases (Figure 3), it is important to consider that the reported number of positive
cases in the health surveillance system was affected by an error due to the presence of many
positive individuals who were not identified. This number of unreported cases varied over
the study period due to a combination of factors including the changes in the number of
tests carried out and in isolation protocols, the effectiveness of the vaccine in reducing
symptoms, the milder variants, and the psychological impact on individuals [6].

Identifying an appropriate time period to compare the predicted and reported cases
was challenging. Ideally, validation should be performed when the number of unreported
cases is as low as possible. However, the quantitative data on underreporting were not
available. Therefore, a qualitative analysis of health variables that may have influenced the
number of reported and predicted cases over time was conducted to better understand the
comparison between them: time trends in vaccination rates, testing, and sub-variants were
examined across the entire population of the study area.

From October 2021 to March 2022, the number of individuals receiving the third dose
increased from 0% to 60% of the total resident population, peaking in December 2021 and
January 2022. The increase in individuals receiving the third dose might have played a role
in the decrease in the number of reported cases in the waves following the first wave. In
fact, about 15 days after the administration of the third dose, individuals might have been
less susceptible to severe outcomes, potentially affecting the detection of cases.

The decrease in the number of tests recorded since the end of January 2022 (Figure 4)
could be partly due to the introduction of rapid self-diagnostic tests in the Emilia-Romagna
region from 19 January. From the positivity rate (Figure 4), it is clear that if the number of
tests performed during the three waves had been equivalent, more cases would probably
have been reported than were actually recorded in the second and third waves. This sup-
ports the hypothesis that the underreporting was greater in these waves. This hypothesis
also seems to be supported by the hospitalization curve. In fact, the ratio of hospitalizations
to new cases in January 2022 was the lowest of the entire period (2%), suggesting a greater
number of unreported cases in the other waves.

Furthermore, a transition from the Delta variant to the Omicron variant (BA.1) was
observed during the study period. According to the rapid regional surveys [48], the
presence of the Omicron variant in the population increased exponentially in December
2021, overtaking the Delta variant between the penultimate week and last week of the
month. This transition was followed by further variations within the Omicron lineage
(BA.2, BA.4, BA.5, BA.2.75, BQ1, and XBB) (Figure 7). An increase in COVID-19 cases
was observed concurrently with the variant or lineage variations (Figures 3 and 7), in
agreement with other studies [6,49]. Furthermore, the milder fluctuations in the predicted
and reported cases in the months from October to December 2022 coincided with the minor
variations in the Omicron lineages.



Int. J. Environ. Res. Public Health 2024, 21, 741 14 of 18

Figure 7. Percentage of SARS-CoV-2 variant lineages over time obtained from regional surveys.

It is important to emphasize that the shedding values used in the model [31] were
only related to the Delta and Omicron variants (mainly BA.1). Therefore, the model
overestimation in the second and third waves could also be attributed to a change in
shedding due to the shift from Omicron BA.1 to BA.2 and from Omicron BA.2 to BA.4/BA.5,
respectively. In fact, the shedding associated with the BA.1 sub-variant is likely to be
lower than that associated with Delta and Omicron BA.2 and BA.5 [49]. However, this
overestimation does not fully justify the magnitude of the observed difference between the
predicted and reported cases.

In conclusion, the most reliable period for the accurate validation of the model could
be from October 2021 to the end of February 2022, when the number of underreported
cases was likely to be the lowest. According to the reported and predicted cases during this
period, the model underestimated the number of cases reported by the healthcare system.
This discrepancy, although within the uncertainty interval, is still noteworthy and may be
due to the use of the parameters from the literature, such as the fecal shedding rate.

4.4. Spatial Comparison of the Predicted and Reported Cases in Each Grouped Area

The temporal inconsistency in the variation in the reported IRj within the same area
suggests that a random effect could have caused the increase in cases in one area rather
than another. Furthermore, in the areas where the variation in the reported IRj remained
consistent over time, other factors such as the deprivation and obesity indices [50] may
need to be considered to explain the variability in IRj.

Additionally, a limitation of the proposed approach is the use of an estimate of the
population domiciled in each area (Section 2.1) to calculate the reported IRj. In summary, the
model accurately predicted the spatial distribution of cases because the reported IRj showed
minimal variations among the different grouped areas. Consequently, the distribution of
reported cases across the areas was primarily influenced by the population size of each
area, which also determined the distribution of the predicted cases.

5. Conclusions

The model presented aimed to correlate the virus concentration at the WWTP with the
number of COVID-19 cases in the catchment area. This approach was based on previous
models that either omitted biodegradation [14–17] or treated it as a uniform factor across the
catchment area [3]. Our approach included a detailed consideration of the biodegradation
along the sewer system, using an approach similar to that of McCall et al. [18] but with
an additional step: associating the biodegradation factor with the population distribution
and characteristics.

By applying the model to the data from the main WWTP of Bologna, the daily COVID-
19 cases were estimated for each census section or statistical area served by the WWTP.
To evaluate the performance of the model, the predicted cases were compared with those
reported by the healthcare system. The results were first analyzed by comparing the
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predicted and reported infection rates over time, and then by examining the variation in
the different areas.

The model performed satisfactorily in predicting the trend of reported cases over time
and space. The correlation between the predicted and reported cases was consistently high
across the three waves, demonstrating the model’s ability to predict the relevant waves and
the significant increase in the number of cases.

The model slightly underestimated the number of reported cases in the first COVID-19
wave and overestimated them in subsequent waves. The analysis of several health variables,
in particular the tests of time trends, suggested a greater underreporting of cases by the
healthcare system in the second and third waves. This could partly explain the greater
difference between the predicted and reported cases in these waves and demonstrates
the potential use of the model as a valuable tool for early warning systems, providing a
complementary approach to clinical surveillance. In addition, a time lag of 9 days was
observed between the variations in the SARS-CoV-2 load at the WWTP and changes in the
trend of reported active cases.

The inclusion of biodegradation in the model equation significantly improved the case
estimates and allowed the calculation of the decline in virus load along the sewer network
from each area to the WWTP. Conversely, the addition of the population-based coefficient
did not significantly alter the final result.

The model estimated that biodegradation significantly reduced the virus load reaching
the WWTP, resulting in a 30% reduction in the total virus load produced in the study area.
The approach used in this study allows for the comparison of data from WWTPs in different
cities by normalizing the detected values for virus biodegradation and the geographical
distribution of the population.

Notably, potential changes to the parameters can be easily implemented to improve
the accuracy of the model and can be obtained by collecting additional site-specific in-
formation and measurements (e.g., sewer flow velocity and biodegradation constant). In
particular, an important future development could be the calculation of the parameter of
the fecal shedding rate in situ and over time to obtain the shedding values specific to the
demographic characteristics of the population and to the virus sub-variants to which the
model is applied.

In addition, the model could be optimized by placing sampling and measurement
points along the sewer network. This would improve the accuracy and reliability of the case
estimates for the different areas and could help to identify the local differences in infection
rates. Additionally, the model can be easily integrated into an online dashboard, enhancing
the accessibility and immediacy for public health officials. Finally, the model could be
adapted for the surveillance of other viruses or chemicals, making it a versatile tool for
monitoring and preventing the impact of different viruses or substances on the population.
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